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Abstract—Machine Learning (ML) has proven to be highly
effective in solving complex tasks such as human activity and
speech recognition. However, the introduction of accuracy-driven
ML models has brought new challenges in terms of their
applicability in resource-constrained systems. In Human Activity
Recognition (HAR), current state-of-the-art approaches often
rely on complex multilayer LSTM (Long Short Term Memory)
networks once they are well suited to handle temporal series data,
a crucial aspect of HAR, but presenting a high computational
cost associated with running the inference phase. In HAR, low-
power IoT devices, such as wearable sensor arrays, are frequently
used as data-gathering devices. However, we observed a limited
effort to deploy ML technology directly on these devices, most
commonly using edge or cloud computing services, which can
be unavailable in some situations. This work aims to provide
a Convolutional Neural Network (CNN) tuned for resource-
constrained embedded systems. After tuning the CNN model in
the Pytorch framework, we present an equivalent C model and
employ optimization techniques. The results show that, compared
to the reference CNN, the optimized model reduced the CNN
model 2.34 times, does not require floating-point units (FPUs),
and improved accuracy from 74.9% to 85.2%. These results
show the feasibility of running the proposed CNN on resource-
constrained devices.

Index Terms—Machine Learning, 1D CNN, Human Activity
Recognition, Embedded Systems, Constrained Devices

I. INTRODUCTION

Human Activity Recognition (HAR) is a research area that
has received significant attention in recent years, thanks to
the proliferation of mobile phones and IoT sensors equipped
with complex sensor arrays such as accelerometers and mag-
netometers. Embedded devices have been identified as crucial
components in HAR. HAR data can be gathered through
wearable sensors such as smartwatches and bracelets. With the
ubiquity of smartphones, even within the elderly demographic,
recent studies have used these devices to record and categorize
human activity [1].

Machine Learning (ML) has effectively solved various tasks
in industries, especially areas with complex correlations, such
as speech recognition and medical diagnosis. Recent studies
proposed different neural network models applied in HAR
tasks, including complex architectures with low real-life appli-
cability due to the required computational costs [2]. This is an
issue in various ML tasks. More complex tasks, such as speech
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recognition for virtual assistants, are mainly cloud-based [3],
where local devices only function as input data for the neural
network located off-site on servers dedicated to ML.

Speech recognition is similar to HAR since both contain
high temporal correlation, where past processed data affect
the current output. Long-short-term memory (LSTM) neural
networks have been widely used in these tasks and currently
represent state-of-the-art accuracy in speech recognition and
HAR. LSTM contains complex dependencies that require re-
sources scarce in most embedded systems. Recent approaches
using battery-powered devices suggest transferring the task
of processing the inference to devices with more power
availability, using embedded devices only for data gathering
[1]. These proposals neglect the situation where edge devices
are unavailable, creating gaps in the processed data array
and increasing the probability that the system does not detect
emergencies in real time.

The objective of this work is to provide a CNN tuned for
resource-constrained embedded systems, using optimization
and efficient neural network modeling techniques. Specific
goals include:

1) Develop a C model for a reference CNN, once C lan-
guage brings advantages like a small memory footprint,
and compact and efficient code generation;

2) Optimize the CNN C model for power-constrained em-
bedded devices;

3) Optimize the CNN C model in terms of memory foot-
print.

This paper is organized as follows. Section II presents the
state-of-the-art of ML in HAR tasks, positioning this work
w.r.t. the literature. Section III presents the author’s previous
work, presented in [4], which includes the CNN reference
model and optimizations made using the Pytorch framework.
Section IV presents the C model and the evaluation of using
integer representation. Section V presents the method adopted
to compress the CNN parameters, weights, and bias to reduce
the CNN model size. Section VI concludes this paper, pointing
out directions for future work.

II. RELATED WORK

Table I summarizes the related work, where each row color
corresponds to an ML method: LSTM in red, CNN in green,
and hybrid approaches of CNN and LSTM in blue. The last
row presents our work compared to the literature. We observe



TABLE I
RELATED WORK ON MACHINE LEARNING APPLIED FOR HAR.

Work Model Modeling Goals
LSTM Networks Using Smartphone Data for Sensor-Based
Human Activity Recognition in Smart Homes [5] LSTM TensorFlow Compare different LSTM approaches

Human activity recognition from inertial sensor time-series
using batch normalized deep LSTM recurrent networks [6] LSTM Keras Python LSTM accuracy for temporal correlation analysis

Convolutional Neural Networks for Human Activity
Recognition using Mobile Sensors [1] CNN not defined by the Authors Novel CNN approach to achieve state-of-the-art

accuracy in HAR problem
A Fully Onchip Binarized Convolutional Neural Network
FPGA Implementation with Accurate Inference [7] Binarized CNN Pytorch State-of-the-art accuracy in a FPGA using

low-power and low-area techniques
Human Activity Recognition Using Cascaded Dual Attention
CNN and Bi-Directional GRU Framework [8] CNN + GRU TensorFlow Human activity recognition in video streams

Inception inspired CNN-GRU hybrid network for human
activity recognition [9] CNN + GRU TensorFlow

Develop a HAR model that is reasonably
accurate and less complex so that it can be later
deployed in embedded devices

Deep Convolutional and LSTM Recurrent Neural Networks
for Multimodal Wearable Activity Recognition [10] CNN + LSTM Lasagne Improve accuracy of LSTM approach using CNN

as Feature Extractor
Towards effective detection of elderly falls with CNN-LSTM
neural networks [11] CNN + LSTM not defined by the Authors Accurate fall detection using wearable sensors in

the elderly population
MultiCNN-FilterLSTM: Recognition of human activity based
on sensor-based resources in IoT applications [2] CNN + LSTM Pytorch Support IoT systems that require a

resource-efficient model
A novel vision-based fall detection scheme using keypoints of
human skeleton with long short-term memory network [12] CNN + LSTM not defined by the Authors Solution for fall detection using vision-based

approaches

This work 1D CNN Pytorch and C models Integer representation with reduced model size
targing processors with limited resources

a lack of proposals using IoT devices as the target device
for ML inference. Optimization techniques were proposed, for
example, by Gholami et al. [13], minimizing accuracy loss
without power and memory footprint analyses, key parameters
for embedded systems. Mekruksavanich et al. [5] mention
using smartphones as a data capture source, but little effort
is made to use them as the target for the inference phase.

Many of the proposed models [2, 6, 10, 11, 12] consist
of complex, stacked, LSTM structures, which require the use
of resources that are scarce in embedded systems, such as
memory area. On the one hand, these works achieved state-
of-the-art accuracy for many datasets. The same occurs for
Ullah et al. [8] and Dua et al. [9], but using a combination
of CNN and GRU. However, they do not apply to battery-
powered devices that require an edge or cloud device to
process this information. In practice, edge or cloud devices
are not available everywhere or always, creating the risk of
not detecting an emergency, such as a hard fall event.

III. OPTIMIZED 1D CNN MODEL

This section presents the author’s previous work [4], pre-
sented in SBESC 2022, which includes the CNN reference
model and optimizations made using the Pytorch framework.

Figure 1 presents the 1D CNN baseline model [14]. It
contains three convolutional layers and two fully connected
(FC) layers. This model adopts the rectified linear activation
function (ReLU) after each convolution [15]. It is a rela-
tively simple architecture by today’s standards. Its goal is
not to achieve state-of-the-art accuracy but to demonstrate
the effectiveness of simple CNN models in HAR tasks. This
CNN uses a public dataset, similar to the MobiAct [16]
dataset, containing 20,000 sensor readings from 6 people, each
performing five different actions.

The major disadvantage of this 1D CNN model is the lack of
temporal analysis. Human activities are highly related to previ-
ous and future movements. Although temporal characteristics
are embedded in sensor data, it is insufficient to detect complex
human activities accurately. Recent approaches [1, 11] process
data in time frames extracted from raw sensor data with a
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Fig. 1. 1D CNN Reference Model [4].

sliding-window method. These approaches increase accuracy
by reducing the effect of unintended data (noise or random
human motions) on the readings.

Our previous work [4] explored the design space of the
CNN model, including FC size, kernel size, number of convo-
lutional layers, and inclusion of temporal awareness. The main
contribution of [4] was the addition of temporal awareness to
the reference model, keeping its reduced complexity, resulting
in the Extended 1D model – Ext1D.

The Ext1D model modified the convolutional layer to in-
clude multiple time steps simultaneously. The original model
takes a single time step as input (vector with 40 elements),
resulting in a 1x28 feature map (3rd convolutional layer).
Combined with the number of filters (64), the flatten layer
transforms these multiple vectors into a single 1x1,792 vector
(Figure 1). In the Ext1D model, the new time frame has 120
elements (3 temporal time steps). Using the Ext1D model,
the size of the resulting feature map is 1x108, which contains
approximately 3.8 times more information than the reference
model, improving accuracy. The fully connected (FC) input
size is now 1x6,912 to accommodate this larger feature map.
Despite the increased number of weights in the FC layer,
it requires fewer weights than other evaluated optimizations
while achieving higher accuracy.

The baseline model achieves 74% accuracy in activities ran-
domly selected from the dataset, having 271,621 parameters.
The Ext1D model reached an accuracy of 89%, however, the
number of parameters increased to 926,981. The Ext1D model
was modeled in the PyTorch [17] framework.



IV. INTEGER C MODEL

This section presents how we converted the PyTorch Ext1D
model to a C model using integer representation, avoiding
floating-point (FP) representation. FP units (FPUs) are expen-
sive cores in processors and should be avoided in devices that
are restricted in energy and area [18].

The PyTorch framework is responsible for: (i) generating
C header files with input features, weights, and bias; (ii)
providing the reference accuracy (gold model). The model
described in C language (C model) executes only the inference
phase using header files created by “ConvertTensor.py”. The
goal is to have a code in C language that runs only the CNN
model without preprocessing files or performing normalization
computations. The C model generates for each inference the
tuple {correct class, inferred class}. An auxiliary program
reads the generated data, computes the accuracy, and generates
the confusion matrix, as presented in Listing 1.

Listing 1. Accuracy evaluation and confusion matrix generated after the
inference phase for 3,923 samples, with a batch size equal to 32.
TOTAL SAMPLES: 3923
----------------------
Accuracy: 88.5
-----------------------
Correct predictions: 615
Wrong predictions: 80
----------------------
Confusion Matrix:

0 1 2 3 4
0: 123 1 1 0 0
1: 17 123 6 0 6
2: 0 5 123 2 0
3: 0 0 33 123 2
4: 0 0 3 4 123

PyTorch considers the batch size to compute the accuracy
value, which contains 32 samples. Thus, for this example, we
obtain 123 sets (⌈ 3923

32 ⌉ = 123). As a result, the maximum
number displayed in the confusion matrix is 123 because,
out of the 123 evaluated sets, there was at least one correct
prediction for a given class in one of the 32 samples. For
example, in Listing 1, the horizontal row for class 1 shows
the detection of 29 sets (17 + 6 + 6) of a class different than
1, but in all sets, there was at least one correct detection in
this class. PyTorch computes the accuracy using the formula
( correct predictions
correct pred. + wron pred. ), resulting in this example in an

accuracy of 88.5% ( 615
615+80 ).

A. Description of CNN Layers

We implemented the C model without using standard li-
braries or function calls. The goal is to improve the per-
formance of the C model. The training phase uses layers
not required during inference, such as the Dropout Layer.
Therefore, we did not include these layers in the C model.

Two convolution models were implemented. The first model
receives a unidimensional vector corresponding to the raw
data extracted from the dataset as input. This raw data input
has a shape of 1 × 120. Considering that the input vector
has 120 entries, KERNEL_SIZE=5, and the number of filters
equals to 64, this first layer executes 37,120 MAC (multiply-
accumulate) operations (64× 116× 5).

The 2nd and 3rd convolutional layers use the second convo-
lution model, detailed in Listing 2. This model uses a bidimen-
sional input shape of 64×116, and 64×112 in the 2nd and 3rd

layers. The first dimension, 64, corresponds to the number of
filters. The second parameter corresponds to the input features
size minus (kernelsize− 1). The external loops (lines 1 and
2) iterate through the output filters (filterToGenerate)
and output vectors (inputOffset). Line 3 initializes the
counter used to generate one result. The two inner loops (lines
4 and 5) execute the kernel operation. The number of MAC
operations is equal to 2,293,760 (64 × 112 × 64 × 5) and
2,211,840 (64 × 108 × 64 × 5) for the 2nd and 3rd layers,
respectively.

Listing 2. 1D convolution layer, using a bidimensional input shape as input.

1 for (int filterToGenerate=0; filterToGenerate<NUM_FILTERS; filterToGenerate++ ){
2 for (int inputOffset = 0; inputOffset < CONV3_INPUT_SIZE-4; inputOffset++){
3 conv3_totalSum = 0;
4 for (int filterIn = 0; filterIn < NUM_FILTERS; filterIn++){
5 for (int kernelIndex = 0; kernelIndex < KERNEL_SIZE kernelIndex++){
6 int weightIndex = kernelIndex + (filterIn * KERNEL_SIZE) +

(filterToGenerate * NUM_FILTERS * KERNEL_SIZE) ;↪→
7 int indexIn = kernelIndex + inputOffset;
8 conv3_totalSum += conv0_featureMap[filterIn][indexIn] *

conv3_weights[weightIndex];↪→
9 }

10 }
11 conv3_totalSum += conv3_bias[filterToGenerate];
12 conv3_featureMap[filterToGenerate][inputOffset] = conv3_totalSum;
13 }
14 }

The reference model uses ReLU as the activation layer
function [15]. It is a function used in several neural networks
due to its simplicity of implementation.

Listing 3 presents the implementation of the FC
layer. The external loop, starting at line 1, iterates ac-
cording to the FC size (FC1_OUTPUT_SIZE=128 and
FC2_OUTPUT_SIZE=5). The inner loop iterates through the
input vector, performing MAC operations.

Listing 3. Fully Connected C implementation.
1 for (int outputIndex = 0; outputIndex < FC_OUTPUT_SIZE; outputIndex++){
2 totalValue = 0;
3 for (int i = 0; i < fc1_inputSize; i++)
4 totalValue += flatten1_vector[i] * fc1_weights[(fc1_inputSize*outputIndex)+i];
5 fc1_out_vector[outputIndex] = totalValue + fc1_bias[outputIndex];
6 }

Table II summarizes the main CNN parameters and the
number of MAC operations per inference. It is necessary to
execute 5,428,096 MAC operations per inference.

TABLE II
CNN MAIN PARAMETERS MAC OPERATIONS PER INFERENCE.

Input Size Output Size # of filters kernel size MAC operations
CONV 1 120 116 64 5 37,120
CONV 2 116 112 64 5 2,293,760
CONV 3 112 108 64 5 2,211,840
FC 1 6,192 128 128 – 884,736
FC 2 128 5 5 – 640

Total: 5,428,096

B. Quantization Process for 32-bit Integer

The Pytorch framework provides quantization methods
(https://pytorch.org/docs/stable/quantization.html). We evalu-
ated the “Post-Training Dynamic Quantization” and “Quan-
tization Aware Training for Static Quantization” methods, but
they reduced the accuracy or required significant changes in
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the model. Thus, we decide to implement quantization in the
C model, not in the Pytorch framework.

Using the PyTorch results as the gold model, we first
validated the C model using the FP representation. After
validating this model, we used a Python script to convert the
FP header files to integer values by multiplying the values by
a constant. Although simple, the method requires defining the
multiplication value M to avoid overflow in the convolution
or FC layers. We evaluated different M values, observing that
larger values, such as 10,000, reduce accuracy due to overflow
in the FC layers. Thus, empirically, we define M as 1,000.
This multiplier factor can be easily modified, as it is an input
for the Python script.

Using a multiplication factor requires attention when con-
necting one layer’s output to the next. Given that the weights
are multiplied by the input data, both quantized by M , the
outputs are multiplied by M2. So, before starting a new layer,
we must divide all results by M .

The C model is the same as FP and integer representation,
with the same functions such as convolution, ReLU, and FC.
However, two changes are needed in the code. The first is to
change the data type from float to int. The second change is
to include the header files with integers.

C. C Model Results

Table III presents the model size and accuracy for the
CNN models, using the testing dataset (3,923 samples). The
reference model showed a slight increase in accuracy (0.9%).
This occurs because the testing dataset used by PyTorch (20%)
and C models may differ. The accuracy values in PyTorch
correspond to an average of several executions of the inference
phase. The Ext1D FP model increased the accuracy by 13.6%
(88.5−74.9) due to the reduction in incorrect predictions, from
207 to 80. The Ext1D INT model slightly reduced accuracy,
1.3%, due to an increase in wrong predictions, from 80 to 90.

TABLE III
MODEL SIZE (NUMBER OF PARAMETERS) AND ACCURACY EVALUATING.

Model Model Size Accuracy (%)
Pytorch - Reference 271,621 74.0
Pytorch - Ext1D 926,981 89.0
Reference Model (C) 271,621 74.9
Ext1D FP (C) 926,981 88.5
Ext1D INT (C) 926,981 87.2

The C models were profiled using the OVP simulator
[19], with a RISCV32IMF processor [20], by partitioning the
instruction set into classes, instrumenting the OVP simulator
through callbacks that evaluate each instruction fetched from
memory. The compilation parameters use the OVP cross-
compiler with O2 optimization. The RISCV32IMF processor
has FP instructions that implement MAC operations, called
“single precision fused multiply addition”. These instructions
reduce the number of instructions when executing the FP
model. The instruction profiling enables to: (i) evaluate the
number of memory accesses (LOAD/STORE), which implies
energy consumption and processing time due to the memory
access latency; (ii) quantify the number of executed arithmetic
operations.

Table IV(a) presents the profiling for the reference, Ext1D
FP and Ex1D INT models. This Table shows that:

1) Memory Access (Load and Store): increased by 3.7
times. An expected increase since the Ext1D model
increases the model size (refer to Table III) by 3.4 times.
The increase in model size also implies an increase in
the total number of executed instructions by 3.7 times.

2) Arithmetic Operations: the number of multiplications
(FP and INT) is equal to that obtained in Table II
(5,428,096), showing that the C implementation did not
perform unnecessary multiplications.

3) The FP implementation does not require division oper-
ations, while INT does, given the need for divisions in
the quantization adjustments between the layers.

4) Integer addition/subtraction operations. In the INT
model, we observe an increase of 5,507,305 operations.
This is due to the MAC instructions in the FP instruction
set, which reduces the number of executed instructions.

TABLE IV
C MODEL RESULTS.

(a) Instruction profiling of the CNN C models – RISC-V processor
Instruction Class FP Reference Model Ext1D FP Ext1D INT
LOAD 2.945.844 10.871.684 10.893.314
STORE 12.179 41.946 63.668
IMM 90 53 46
ADDSUB 4.944.252 18.196.854 23.704.159
MULT 0 0 5.428.096
DIV 0 0 21.637
BRANCH 1.737.527 6.401.926 6.423.755
JUMP 242.376 887.496 887.496
FP OP 16.406 57.358 0
FP MUL 1.470.336 5.428.096 0
FP DIV 0 0 0
FP AddSub 6.277 21.637 0
Total nb of exec. inst. 11.375.287 41.907.050 47.422.171

(b) Execution time to execute the models (Apple M2 processor).
Total time (sec) 7.885 28.568 4.175
Time per inference (ms) 2.010 7.282 1.064

(c) Estimation of the energy consumption to execute the models (20pj INT - 131pJ FP).
Energy (pJ) 393 1,449 948

We evaluated the execution time on an Apple M2 pro-
cessor, using a clang 14.0.3 compiler with O2 optimization.
Table IV(b) presents the time to execute the 3,923 inferences
and the time per inference (average result over five executions
of each model). The time per inference increased by 3.6 times
due to the increased model size (Ext1D FP). The Ext1D INT
model is 6.84 times faster than the FP model, and despite the
increase in model size, the Ext1D INT model is 1.9 times
faster than the reference model. This result demonstrates the
significant latency of FP operations. Despite accounting for
instructions on the RISC-V processor and execution time on
another processor, Ness et al. [21] shows that the latency is 2 to
8 times higher for FP instructions than for integer instructions,
which is consistent with the results.

The energy consumption evaluation considers data from
the literature. In [22], the average cost for executing integer
operations is 20pJ@1.7GHz, at 22nm. BOOM-2w [23] and
Shakti [24], both with a RISCV-IMAFD, the energy cost per
FP operation is 133pJ and 122 pJ, respectively. From [21],
it is possible to infer 137.6pJ for the FP operations for 22
nm@1.7GHz, a value close to that obtained in the literature.



Thus, we use 20pJ for integer instructions and 131pJ (average
of 133, 120, 137.6) for FP instructions. Table IV(c) presents
the estimated energy, using the instruction profiling. Consis-
tently, the energy consumed by the FP model concerning the
reference model increases by 3.7 times due to the model size.
However, due to the lower energy cost of INT operations than
the cost of FP operations, the energy consumed by the integer
model is only 2.41 times higher.

The Ext1D INT successfully achieved its main goal: im-
prove accuracy (12.3% better) without using FPUs. However,
one challenge remains, the model size. The memory footprint
is a critical parameter in embedded systems with limited
resources.

V. MEMORY OPTIMIZED C MODEL

This section presents a Lookup Table (LUTs) quantization
method to reduce the model size. In this method, the original
values of the weights and biases are grouped into bins. An
LUT with bins n contains the model values, replacing the
original values with indexes pointing to a position in the LUT
[25]. This work evaluated two LUT quantization methods:

• Fixed quantization. Employs bins of fixed size. To find
the bin widths, the maximum and minimum values of
the input values are calculated and then divided by the
number of bins. Once the intervals are defined, each
parameter receives the index of the interval into which
it falls. Fixed bin sizes provide a consistent and easy-
to-interpret data representation. However, it may not
be optimal for datasets with varying densities or when
important features are masked by bin size selection.

• Variable quantization. Seeks to have an equal number of
elements in all bins. Equation n elem = #parameters

nbins
gives the number of elements in each bin. To execute
a variable quantization, the input parameters are sorted,
inserting n elem parameters into each bin. This approach
offers flexibility in capturing distribution details and is
useful for parameters with varying densities or outliers.

We adopt histograms to visualize the quantization methods.
Figure 2 presents the weights’ distributions for the 2nd convo-
lutional and FC1 layers. We observe that the layers have distri-
butions varying considerably. While the second convolutional
layer presents a normal distribution, the FC1 layer presents
most weights with a high percentage of values in the center
of the histogram. Observe the histograms with variable bin
widths. The width of the bin is inversely proportional to the
number of values in the original distribution. The tails with
fewer parameters present wider bins, whereas regions with
more parameters have thinner bins. The most representative
example of this behavior is observed in the weights of FC1,
concentrating most parameters in a small area.

Table V displays the accuracy data, varying: (1) bin size, (2)
data representation, and (3) the type of quantization. Note that
the loss of accuracy is minimal with 16-bin LUTs. This is a
surprising result considering that there is a layer with 884,736
parameters (FC1), being possible to represent it with just 16
values, with minimal loss in accuracy. Another unexpected
data is the equivalence between fixed and variable quantization
methods up to 16 bins. This result suggests that the number
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Fig. 2. Quantization of the weights for the 2nd convolutional and FC1 layers.
Y-axes: number of elements inside the bin. X-axes: value used in the bin
(center of the interval).

TABLE V
ACCURACY PER BIN SIZE, VARYING THE QUANTIZATION METHOD.
Accuracy Float representation % Integer representation %

Nb. of bins Fixed Variable Fixed Variable
64 88.10 87.10 87.1 86.7
32 88.20 86.70 86.5 86.7
16 88.00 86.90 86.0 87.1
8 47.30 85.80 38.9 85.5
4 28.50 75.70 28.2 75.7
2 20.00 47.90 22.3 41.6

of bins equal to 16, for this CNN model, is the value to be
adopted for the remainder of this work.

It is also worth noting the limits these quantization methods
have. For fixed quantization in this CNN, 16 bins is the
minimum value. However, with variable quantization, we can
have an aggressive quantization, with only eight bins, with
little loss of accuracy. Therefore, when adopting quantization
methods, it is recommended to adopt variable quantization,
especially if the designer adopts an aggressive strategy to
reduce model size.

The implementation of the LUT-based quantization model
adopts a memory “compression” method. The compressed
method “packs” the quantized weight and bias values in one
integer value. Using 16-bin LUTS, we need 4-bit indexes.
Thus, each integer value (32 bits) in the C header files contains
eight indexes, reducing the model size eight times.

Table VI summarizes the results. The “compressed” model
added complexity to the C model. The increased complexity
of the code increased shift operations, logical operands such
as AND/OR and BRANCH instructions. When comparing the
number of instructions executed, the “compressed” model
doubled the number of instructions compared to the Ext1D
Int model. Despite the increase in the number of instructions,
memory accesses (LOAD) increased only by 6%.

Besides the larger number of instructions, the compressed
model is still faster than the float model. On the other hand,
the estimated energy presents higher values among the eval-
uated models. An important future work involves evaluating



TABLE VI
SUMMARY OF THE RESULTS.

Ref. 1D Ext1D FP Ext1D Int Compressed
Accuracy % 74.9 88.5 87.2 87.1
Total inst. (106) 11.38 41.91 47.42 97. 51
LOAD
instructions (106) 2.95 10.87 10.89 11.58

Time per
inference (ms) 2.01 7.28 1.06 4.77

Energy (pJ) 393 1,449 948 1,950
Model size
(#param) 271,621 926,981 926, 981 115,953

execution time and energy on a processor described at the RTL
level, allowing accurate performance (number of clock cycles),
power, and energy estimates. Another relevant future work
is to use hardware acceleration [26], such as the extensions
available in the RISC-V ISA.

The most significant result is presented in the last row
of Table VI: the memory requirements to store the model
(number of parameters). Since the index vectors are reduced by
a factor of 8, a reduction in memory usage of this proportion is
expected. According to the table, the reduction is 7.99, given
the need to store the LUTs. Note that the compressed model
requires less memory than the reference model, which has
an accuracy of 74.9%, compared to 87.1% for the proposed
model. Thus, we have achieved the second goal for resource-
constrained devices: reduce the memory footprint for storing
the CNN model.

VI. CONCLUSION AND FUTURE WORK

The standard 1D CNN model used as a reference in this
research lacks temporal awareness in its implementation, a
crucial aspect for accurately detecting patterns in sensor data,
especially for HAR. Despite its simplicity and modest hard-
ware requirements in terms of computation, the model has
trade-offs. It only achieves a 74% accuracy level in the testing
dataset, making it an inefficient model for practical applica-
tions. To increase accuracy, we added temporal awareness to
this model.

We deployed the reference CNN in a C model equivalent
to the Pytorch model. The goal of the C model is to avoid
FPUs and reduce the memory footprint. This integer-only
model incurred a 1.3% accuracy loss compared to its FP
counterpart. Next, we proposed the “Compressed Model”
to effectively reduce the size of the model by packing the
indices of 8 parameters (weight and bias) into a single integer
word. This model reduced the size of the model almost eight
times, keeping the accuracy of the integer model. However,
this model increased the number of executed instructions,
increasing execution time and energy consumption.

Summarizing, this work achieved its main goal, using a CNN
model in resource-constrained embedded devices, without re-
quiring FPUs or a large amount of memory.

This research paves the way for several future works. The
following points highlight the key areas of interest for future
research: (i) add pruning techniques; (ii) improve accuracy
using a 2D model; (iii) evaluate hardware acceleration; (iv)
evaluate the model in a processor described at the RTL level.
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